
Package: dnn (via r-universe)
September 3, 2024

Type Package

Title Deep Neural Network Tools for Probability and Statistic Models

Version 0.0.6

Date 2024-03-12

Author Bingshu E. Chen [aut, cre], Patrick Norman [aut, ctb], Wenyu
Jiang [ctb], Wanlu Li [ctb]

Maintainer Bingshu E. Chen <bingshu.chen@queensu.ca>

Depends R (>= 3.5.0), ggplot2, survival, Rcpp

Imports methods

LinkingTo Rcpp, RcppArmadillo

Description Contains tools to build deep neural network with flexible
users define loss function and probability models. Several
applications included in this package are, 1) The (deepAFT)
model, a deep neural network model for accelerated failure time
(AFT) model for survival data. 2) The (deepGLM) model, a deep
neural network model for generalized linear model (glm) for
continuous, categorical and Poisson data.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation yes

Date/Publication 2024-03-14 20:50:05 UTC

Repository https://statapps.r-universe.dev

RemoteUrl https://github.com/cran/dnn

RemoteRef HEAD

RemoteSha 7919f678eb36d7fbfb1c2bb238e8d9e40effbd7a

Contents
dnn-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



2 dnn-package

bwdNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
deepAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
deepGLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
deepSurv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
dnnControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
dnnFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
dNNmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
fwdNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
hyperTuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ibs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
msePICW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
optimizerSGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
rsurv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
survfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Index 30

dnn-package An R package for the deep neural networks probability and statistics
models

Description

This package provides tools for deep neural network which allow user define loss function for
complex outcome data with probability and statistics models such as generalized linear models,
accelerated failure time (AFT) models, and Cox proportional hazards models.

It contains the essential building blocks such as feed forward network and back propagation. This
gives users the flexibility to write their own loss function (i.e. cost function) and train the neural
network.

Details

{dnn} is a R package for deep learning neural network with probability models that use the negative
of the log-likelihood as the loss function. It provides functions for feed forward network from
covariates to the output layer and back propagation to find the derivatives of the weight parameters.
Different optimization methods such as stochastic gradient descent (SGD), Momentum and ADAM
can be used to train the network.

Currently, { dnn } can be install by

the package source file ’dnn.tar.gz’, use

install.packages("dnn.tar.gz", repos = NULL, type = "source")

users can use the following steps to install the most recent version of ’dnn’ package:



dnn-package 3

1. First, you need to install the ’devtools’ package. You can skip this step if you have ’devtools’
installed in your R. Invoke R and then type

install.packages("devtools")

2. Load the devtools package.

library(devtools)

3. Install "dnn" package from github with R command

install_github("statapps/dnn")

A stable version of View the "dnn" package is also available from the Comprehensive R Archive
Network (https://CRAN.R-project.org/package=dnn) and can be installed using R command

install.packages("dnn")

Author(s)

Bingshu E. Chen

Maintainer: Bingshu E. Chen <bingshu.chen@queensu.ca>

See Also

dNNmodel, bwdNN, fwdNN, deepAFT, deepGLM, deepSurv, coxph, glm survival

Examples

# Create the models with 3 layers
model = dNNmodel(units=c(8, 6, 1), activation = c('elu', 'relu', 'sigmoid'),

input_shape = c(3))
print(model)

#
# Feed forward network with dummy data x

x = matrix(runif(15), nrow = 5, ncol = 3)
cache = fwdNN(x, model)

#
# Back propagation with dummy dy = dL/dyhat and minin batch for SGD

dy = as.matrix(runif(5, -0.1, 0.1), nrow = 5)
dW = bwdNN(dy, cache, model)

#
# Gradient descent with SGD

lr_rate = 0.0001
sgd = function(w, dw) {w-lr_rate*dw}
model$params = mapply(sgd, w = model$params, dw = dW)



4 activation

activation Activation function

Description

Different type of activation functions and the corresponding derivatives

Usage

sigmoid(x)
elu(x)
relu(x)
lrelu(x)
idu(x)
dsigmoid(y)
delu(y)
drelu(y)
dlrelu(y)
dtanh(y) #activation function tanh(x) is already available in R

Arguments

x input of the activation function

y input of the derivative of the activation function

Details

Each function returns either the activation function (e.g. sigmoid, relu) or its derivative (e.g. dsig-
moid, drelu).

Value

An activation function is applied to x and returns a matrix the same size as x. The detail formula
for each activation function is:

sigmoid return 1/(1+exp(-x))

elu return x for x>0 and exp(x)-1 for x<0

relu return x for x>0 and 0 for x<0

lrelu return x for x>0 and 0.1*x for x<0

tanh return tanh(x)

idu return (x)

Author(s)

Bingshu E. Chen



bwdNN 5

See Also

bwdNN, fwdNN, dNNmodel, optimizerSGD, optimizerNAG

Examples

# Specify a dnn nodel with user define activation function in layer 2.
softmax = function(x) {log(1+exp(x))} # y = log(1+exp(x))
dsoftmax = function(y) {sigmoid(y)} # x = exp(y)/(1+exp(y))
model = dNNmodel(units=c(8, 6, 1), activation= c('relu', 'softmax', 'sigmoid'),

input_shape = c(3))
print(model)

bwdNN Back propagation for dnn Models

Description

{bwdNN} is an R function for back propagation in DNN network.

Usage

#
# To apply back propagation in with a feed forward model
#
# use
#

bwdNN(dy, cache, model)
#
# to calculate derivative of dL/dW

Arguments

dy the derivative of the cost function with respect to the output layer of the fwdNN
function.

cache the cached output of fwdNN.
model a model return from dNNmodel function.

Details

Here ’dy’ plays an import role in the back propagation { bwdNN } since the probability model’s
loss function takes the output layer of the { dnn } (denote as yhat) as one of its parameter. Then
’dy’ equals to the partial derivative of the loss function (-Log Likelihood) with respect to yhat, that
is, dy = dL/d(yhat). For example, if the ’dnn’ predicts the probability (yhat = p) for the mixture of
two populations f1 and f2, then the likelihood function is f = p*f1 + (1-p)*f2, and the loss function
is L = -log(p*f1+(1-p)*f2). Hence, dy = dL/dp = -(f1-f2)/f.

’cache’ is the cache of each input layer generated from the { fwdNN } function.

The function { bwdCheck } calculates the numerical derivatives of dL/dW, which can be used to
check if the back propagation is correct or not, see example below.



6 deepAFT

Value

A list contains the derivatives of weight parameter W is returned.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

See Also

dNNmodel, fwdNN, plot.dNNmodel, print.dNNmodel, summary.dNNmodel,

Examples

### define a dnn model, calculate the feed forward network
model = dNNmodel(units = c(8, 6, 1),

activation = c("elu", "sigmoid", "sigmoid"), input_shape = 3)
print(model)
x = matrix(runif(15), nrow = 5, ncol = 3)
cache = fwdNN(x, model)
# dy = dL/dp, where L is the cost function such as the
# log-likehood and p is the output layer parameter of the DNN
dy = as.matrix(runif(5, -0.1, 0.1), nrow = 5) # a dummy dy for bwdNN input
y = predict(model, x) + dy

# back propagation
dW = bwdNN(dy, cache, model)
dw = bwdCheck(x, y, model)
print(dW[[1]])
print(dw[[1]])

deepAFT Deep learning for the accelerated failure time (AFT) model

Description

Fit a deep learning survival regression model. These are location-scale models for an arbitrary trans-
form of the time variable; the most common cases use a log transformation, leading to accelerated
failure time models.

Usage

deepAFT(x, ...)

## S3 method for class 'formula'
deepAFT(formula, model, data, control = list(...), method =

c("BuckleyJames", "ipcw", "transform"), ...)

## Default S3 method:



deepAFT 7

deepAFT(x, y, model, control, ...)

## S3 method for class 'ipcw'
deepAFT(x, y, model, control, ...)
# use:
# deepAFT.ipcw(x, y, model, control)
# or
# class(x) = "ipcw"
# deepAFT(x, y, model, control)
#
## S3 method for class 'trans'
deepAFT(x, y, model, control, ...)
# use:
# class(x) = "transform"
# deepAFT(x, y, model, control)

Arguments

formula a formula expression as for other regression models. The response is usually a
survival object as returned by the ’Surv’ function. See the documentation for
’Surv’, ’lm’ and ’formula’ for details.

model deep neural network model, see below for details.

data a data.frame in which to interpret the variables named in the formula.

x Covariates for the AFT model

y Surv object for the AFT model

method methods to handle censoring data in deep AFT model fit, ’BuckleyJames’ for
Buckley and James method, ’ipcw’ for inverse probability censoring weights
method. ’transform’ for transformation based on book of Fan and Gijbels (1996,
page 168)

control a list of control values, in the format produced by ’dnnControl’. The default
value ’dnnControl()’

... optional arguments

Details

See "Deep learning with R" for details on how to build a deep learning model.

The following parameters in ’dnnControl’ will be used to control the model fit process.

’epochs’: number of deep learning epochs, default is 100.

’batch_size’: batch size, default is 128. ’NaN’ may be generated if batch size is too small and there
is not event in a batch.

’verbose’: verbose = 1 for print out verbose during the model fit, 0 for not print.

’epsilon’: epsilon for convergence check, default is epsilon = 0.001.

’max.iter’: number of maximum iteration, default is max.iter = 100.

’censor.groups’: a vector for censoring groups. A KM curve for censoring will be fit for each group.
If a matrix is provided, then a Cox model will be used to predict the censoring probability.



8 deepAFT

When the variance for covariance matrix X is too large, please use xbar = apply(x, 2, stndx) to
standardize X.

Value

An object of class "deepAFT" is returned. The deepAFT object contains the following list compo-
nents:

x Covariates for the AFT model

y Survival object for the AFT model, y = Surv(time, event)

model A fitted artificial neural network (ANN) model

mean.ipt mean survival or censoring time

predictor predictor score mu = f(x)

risk risk score = exp(predictor)

method method for deepAFT fitting, either Buckley-James, IPCW or transformed model

Note

For right censored survival time only

Author(s)

Chen, B. E. and Norman P.

References

Buckley, J. and James, I. (1979). Linear regression with cencored data. Biometrika, 66, page
429-436.

Norman, P. Li, W., Jiang, W. and Chen, B. E. (2024). DeepAFT: A nonparametric accelerated
failure time model with artificial neural network. Manuscript submitted to Statistics in Medicine.

Chollet, F. and Allaire J. J. (2017). Deep learning with R. Manning.

See Also

print.deepAFT, survreg, ibs.deepAFT

Examples

## Example for deep learning model for AFT survival data
set.seed(101)

### define model layers
model = dNNmodel(units = c(4, 3, 1), activation = c("elu", "sigmoid", "sigmoid"),

input_shape = 3)
x = matrix(runif(15), nrow = 5, ncol = 3)
time = exp(x[, 1])
status = c(1, 0, 1, 1, 1)
fit = deepAFT(Surv(time, status) ~ x, model)



deepGLM 9

deepGLM Deep learning for the generalized linear model

Description

Fit generalized linear models (Gaussian, Binomial and Poisson) using deep learning neural net-
work (DNN). The glm formula is specified by giving a symbolic description of the predictor and a
description of the error distribution.

Usage

deepGlm(formula, model, family = c("gaussian", "binomial",
"poisson"), data, epochs = 200, lr_rate = 1e-04,
batch_size = 64, alpha = 0.7, lambda = 1, verbose = 0,
weights = NULL, ...)

Arguments

formula a formula expression as for other regression models. The response is usually
an object for glm response variable. See the documentation for ’glm’, ’lm’ and
’formula’ for details.

model a deep neural network model, created by function dNNmodel().

family a description of the error distribution and link function to be used in the model.
This can be either a character string of ’gaussian’, ’binomial’, or ’poisson’, nam-
ing a family function, or result of a call to a family function (See ’family’ for
details of family functions).)

data a data.frame in which to interpret the variables named in the formula.

epochs number of deep learning epochs, default is 200.

batch_size batch size, default is 64. ’NaN’ may be generated if batch size is too small and
there is not event in a batch.

lr_rate learning rate for the gradient descent algorithm, default is lr_rate = 1e-04.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

alpha momentum rate for the gradient descent method, alpha takes value in [0, 1),
default is alpha = 0.70.

lambda L2 regularization parameter for deep learning.

verbose verbose = 1 for print out verbose during the model fit, 0 for not print.

... optional arguments



10 deepGLM

Details

See dNNmodel for details on how to specify a deep learning model.

The following parameters in ’dnnControl’ will be used to control the model fit process.

’epochs’: number of deep learning epochs, default is 30.

’verbose’: verbose = 1 for print out verbose during the model fit, 0 for not print.

When the variance for covariance matrix X is too large, please use xbar = scale(x) to standardize X.

Value

An object of class "deepGlm" is returned. The deepGlm object contains the following list compo-
nents:

x Covariates for glm model

y Object for glm model

model dnn model

predictor predictor score mu = f(x)

risk risk score = exp(predictor)

Note

For glm models with Gaussian, Binomial and Poisson only

Author(s)

Chen, B. E.

References

Chollet, F. and Allaire J. J. (2017). Deep learning with R. Manning.

See Also

deepAFT, dNNmodel, predict.deepGlm, print.deepSurv, glm

Examples

## Example for deep learning for glm models
set.seed(101)

### define model layers
model = dNNmodel(units = c(4, 3, 1), activation = c("elu", "sigmoid", "sigmoid"),

input_shape = 3)
x = matrix(runif(15), nrow = 5, ncol = 3)
y = exp(x[, 1] + rnorm(5))

fit = deepGlm(y ~ x, model, family = "gaussian")



deepSurv 11

deepSurv Deep learning for the Cox proportional hazards model

Description

Fit a survival regression model under the Cox proportional hazards assumption using deep learning
neural network (DNN).

Usage

deepSurv(formula, model, data, epochs = 200, lr_rate = 1e-04,
batch_size = 64, alpha = 0.7, lambda = 1, verbose = 0,
weights = NULL, ...)

Arguments

formula a formula expression as for other regression models. The response is usually a
survival object as returned by the ’Surv’ function. See the documentation for
’Surv’, ’lm’ and ’formula’ for details.

model a deep neural network model, created by function dNNmodel().

data a data.frame in which to interpret the variables named in the formula.

epochs number of deep learning epochs, default is 200.

batch_size batch size, default is 64. ’NaN’ may be generated if batch size is too small and
there is not event in a batch.

lr_rate learning rate for the gradient descent algorithm, default is lr_rate = 1e-04.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

alpha momentum rate for the gradient descent method, alpha takes value in [0, 1),
default is alpha = 0.70.

lambda L2 regularization parameter for deep learning.

verbose verbose = 1 for print out verbose during the model fit, 0 for not print.

... optional arguments

Details

See "Deep learning with R" for details on how to build a deep learning model.

The following parameters in ’dnnControl’ will be used to control the model fit process.

’epochs’: number of deep learning epochs, default is 30.

’verbose’: verbose = 1 for print out verbose during the model fit, 0 for not print.

’epsilon’: epsilon for convergence check, default is epsilon = 0.001.

’max.iter’: number of maximum iteration, default is max.iter = 30.

When the variance for covariance matrix X is too large, please use xbar = scale(x) to standardize X.



12 deepSurv

Value

An object of class "deepSurv" is returned. The deepSurv object contains the following list compo-
nents:

x Covariates for Cox model

y Surv object for Cox model

model dnn model

predictor predictor score mu = f(x)

risk risk score = exp(predictor)

Note

For right censored survival time only

Author(s)

Chen, B. E. wrote the R code using the partial likelihood cost function proposed by Katzman et al
(2018).

References

Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: Personalized treat-
ment recommender system using a Cox proportional hazards deep neural network. BMC Medical
Research Methodology 2018; 18: 24.

See Also

deepAFT, deepGlm, print.deepSurv, survreg

Examples

## Example for deep learning proportional hazards survival model
set.seed(101)

### define model layers
model = dNNmodel(units = c(4, 3, 1), activation = c("elu", "sigmoid", "sigmoid"),

input_shape = 3)
x = matrix(runif(15), nrow = 5, ncol = 3)
time = exp(x[, 1])
status = c(1, 0, 1, 1, 1)
fit = deepSurv(Surv(time, status) ~ x, model = model)



dnnControl 13

dnnControl Auxiliary function for dnnFit dnnFit

Description

dnnControl is an auxiliary function for dnnFit. Typically only used internally by the dnn package,
may be used to construct a control argument for the deep learning neural network model to specify
parameters such as a loss function.

Usage

dnnControl(loss = c("mse", "cox", "bin", "log", "mae"), epochs = 300,
batch_size = 64, verbose = 0, lr_rate = 0.0001,
alpha = 0.5, lambda = 1.0, epsilon = 0.01, max.iter = 100,
censor.group = NULL, weights = NULL)

Arguments

loss loss function for the neural network model, "mse" for mean square error (guas-
sian glm model), "mae" for mean absolute error, "cox" for the Cox partial likeli-
hood (proportional hazards model), "bin" for cross-entropy (binomial glm model),
"log" for log-linear (poisson glm model).

epochs number of deep learning epochs, default is 30.

batch_size batch size, default is 64. ’NaN’ may be generated if batch size is too small and
there is not event in a batch.

lr_rate learning rate, default is 0.0001.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector, default is NULL.

alpha alpha decay rate for momentum gradient descent, default is 0.5.

lambda regularization term for dnn weighting parameters, 0.5*lambda*W*W), default
is 1.0.

verbose verbose = 1 for print out verbose during the model fit, 0 for not print.

epsilon epsilon for convergence check, default is epsilon = 0.01.

max.iter number of maximum iteration, default is max.iter = 100. This is used in the
deepAFT function

censor.group a vector for censoring groups. A KM curve for censoring will be fit for each
group. If a matrix is provided, then a Cox model will be used to predict the
censoring probability. Used only in the deepAFT function.

Details

dnnControl is used in model fitting of "dnnFit". Additional loss functions will be added to the
library in the future.



14 dnnFit

Value

This function checks the internal consistency and returns a list of values as input to control model
fitting of "dnnFit".

Note

For right censored survival time only

Author(s)

Chen, B. E.

References

Norman, P. and Chen, B. E. (2023). DeepAFAT: A nonparametric accelerated failure time model
with artificial neural network. Manuscript to be submitted.

See Also

deepAFT, deepGLM, deepSurv, dnnFit

Examples

## Example for dnnControl
##
# model = dNNmodel()

control = dnnControl(loss='mse')

# can also be used in
# fit = dnnFit(y ~ x, model, control)
# print(fit)

dnnFit Fitting a Deep Learning model with a given loss function

Description

dnnFit is used to train a deep learning neural network model based on a specified loss function.

Usage

dnnFit(x, y, model, control)



dnnFit 15

Arguments

x covariates for the neural network model

y output (target) value for neural network model

model the neural network model, see below for details

control a list of control values, in the format produced by ’dnnControl’. The default
value is dnnControl(loss=’mse’)

Details

The ’dnnFit’ function takes the input data, the target values, the network architecture, and the loss
function as arguments, and returns a trained model that minimizes the loss function. The function
also supports various options for regularization and optimization of the model.

See dNNmodel for details on how to specify a deep learning model.

Parameters in dnnControl will be used to control the model fit process. The loss function can be
specified as dnnControl(loss = "lossFunction"). Currently, the following loss functions are sup-
ported:

’mse’: Mean square error loss = 0.5*sum(dy^2)

’cox’: Cox partial likelihood loss = -sum(delta*(yhat - log(S0)))

’bin’: Cross-entropy = -sum(y*log(p) + (1-y)*log(1-p))

’log’: Log linear cost = -sum(y*log(lambda)-lambda)

’mae’: Mean absolute error loss = sum(abs(dy))

Additional loss functions will be added to the library in the future.

{ dnnFit2 } is a C++ version of dnnFit, which runs about 20% faster, however, only loss = ’mse’
and ’cox’ are currently supported.

When the variance for covariance matrix X is too large, please use xbar = scale(x) to standardize X.

Value

An object of class "dnnFit" is returned. The dnnFit object contains the following list components:

cost cost at the final epoch.

dW the gradient at the final epoch dW = dL/dW.

fitted.values predictor value mu = f(x).

history a cost history at each epoch.

lp predictor value mu = f(x).

logLik -2*log Likelihood = cost.

model a dNNmodel object.

residuals raw residual dy = d log(L)/dmu

dvi deviance dvi = dy*dy

Author(s)

Chen, B. E. and Norman P.



16 dNNmodel

References

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66, page 429-
436.

Norman, P. and Chen, B. E. (2019). DeepAFAT: A nonparametric accelerated failure time model
with artificial neural network. Manuscript to be submitted.

Chollet, F. and Allaire J. J. (2017). Deep learning with R. Manning.

See Also

deepAFT, deepGlm, deepSurv, dnnControl

Examples

## Example for dnnFit with MSE loss function to do a non-linear regression
set.seed(101)

### define model layers
model = dNNmodel(units = c(4, 3, 1), activation = c("elu", "sigmoid", "sigmoid"),

input_shape = 3)
x = matrix(runif(15), nrow = 5, ncol = 3)
y = exp(x[, 1])
control = dnnControl(loss='mse')
fit = dnnFit(x, y, model, control)

dNNmodel Specify a deep neural network model

Description

{dNNmodel} is an R function to create a deep neural network model that is to be used in the feed
forward network { fwdNN } and back propagation { bwdNN }.

Usage

dNNmodel(units, activation=NULL, input_shape = NULL, type = NULL,
N = NULL, Rcpp=TRUE, optimizer = c("momentum", "nag", "adam"))

Arguments

units number of nodes for each layer

activation activation function

input_shape the number of columns of input X, default is NULL.

N the number of training sample, default is NULL.

type default is "dense", currently only support dense layer.

Rcpp use Rcpp (C++ for R) to speed up the fwdNN and bwdNN, default is "TRUE".

optimizer optimizer used in SGD, default is "momentum".



fwdNN 17

Details

dNNmodel returns an object of class "dNNmodel".

The function "print" (i.e., "print.dNNmodel") can be used to print a summary of the dnn model,

The function "summary" (i.e., "summary.dNNmodel") can be used to print a summary of the dnn
model,

Value

An object of class "dNNmodel" is a list containing at least the following components:

units number of nodes for each layer

activation activation function

drvfun derivative of the activation function

params the initial values of the parameters, to be updated in model training.

input_shape the number of columns of input X, default is NULL.

N the number of training sample, default is NULL.

type default is "dense", currently only support dense layer.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

See Also

plot.dNNmodel, print.dNNmodel, summary.dNNmodel, fwdNN, bwdNN, optimizerSGD, optimizerNAG,

Examples

### To define a dnn model
model = dNNmodel(units = c(8, 6, 1), activation = c("relu", "sigmoid", "sigmoid"),

input_shape = c(3))

fwdNN Feed forward and back propagation for dnn Models

Description

{fwdNN} is an R function for feed forward network.

Usage

fwdNN(X, model)
#
# to calculate a feed feedward model
#



18 hyperTuning

Arguments

X For "dNNmodel", X is a design matrix of dimension n * p.

model a model return from dNNmodel function.

Details

’cache’ is the cache of each input layer, will be used in the bwdNN function.

Value

The function fwdNN return a list containing at least the following components:

cache a list contains the values of each output layer after activation function transfor-
mation and adding the intercept term (i.e. the bias term). The intercept does not
add to the output layer in the cache.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

See Also

bwdNN, plot.dNNmodel, print.dNNmodel, summary.dNNmodel,

Examples

### define a dnn model, calculate the feed forward network
model = dNNmodel(units = c(8, 6, 1), activation = c("elu", "sigmoid", "sigmoid"),

input_shape = 3)

### feed forward with a dummy x matrix
x = matrix(runif(15), nrow = 5, ncol = 3)
cache = fwdNN(x, model)

hyperTuning A function for tuning of the hyper parameters

Description

{ hyperTuning} is a tuning tool to find the optimal hyper parameter for the ANN model.



hyperTuning 19

Usage

hyperTuning(x, y, model, ER = c("cindex", "mse"),
method = c('BuckleyJames', 'ipcw', 'transform', 'deepSurv'),
lower = NULL, upper = NULL, node = FALSE,
K = 5, R = 25)

### additional function used in hyperTuning is cross-validation prediction error
#
# CVpredErr(x, y, model, control, method)
#

Arguments

x Covariates for the deep neural network model

y Surv object for the deep neural network model

model A deep neural network model, created by function dNNmodel().

ER Prediction error measurement to be used in the cross vaditation, can be either a
concordance index (cindex) or a mean square error (mse), default is cindex

method Methods to handle censoring data in deep AFT model fit, ’BuckleyJames’ for the
Buckley and James method, ’ipcw’ for the inverse probability censoring weights
method. ’transform’ for the transformation method based on book of Fan and
Gijbels (1996, page 168). ’deepSurv’ for the deepSurv model(Katzman, 2017)

node Tuning the number of nodes in each hidden layer, default is FALSE

K Number of folders of the cross-validatin, default is K = 5.

lower, upper Bounds on the hyper parameters for the deep learning method. If NULL, then
the default value for lower = dnnControl(alpha = 0.5, lambda = 1.0, lr_rate =
0.0001), upper = dnnControl(alpha = 0.97, lambda = 10, lr_rate = 0.001).

R Number of random sample draw from the hyper parameter space, default is R =
25.

Details

A random search method is used to optimal hyper parameter (Bergstra and Bengio, 2012). The
function { CVpredErr} will be call to calculate the cross-validation prediction error for the given x
and y with the specified method from the input argument.

Value

A list of "model" and "dnnControl" is returned. The list contains at least the following components,

model The "model" contains the optimal number of nodes for each hidden layer in the
model specified by dNNmodel

control The "control" contains the optimal tuning parameters with list components the
same as those created by dnnControl

Author(s)

Chen, B. E. (chenbe@queensu.ca)



20 ibs

References

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal
of Machine Learning Research. 13, page 281-305.

See Also

deepAFT, deepGLM, deepSurv, dnnFit

Examples

### Tuning the hyper parameter for a deepAFT model:
#### cross-validation take a long time to run.

set.seed(101)
### define model layers

model = dNNmodel(units = c(4, 3, 1), activation = c("elu", "sigmoid", "sigmoid"),
input_shape = 3)

x = matrix(runif(45), nrow = 15, ncol = 3)
time = exp(x[, 1])
status = rbinom(15, 1, 0.5)
y = Surv(time, status)
ctl = dnnControl(epochs = 30)
hyperTuning(x, y, model, method = "BuckleyJames", K = 2, R = 2, lower = ctl)

ibs Calculate integrated Brier Score for deepAFT

Description

The function ibs is used to calculate integrated Brier Score for deepAFT.

Usage

ibs(object, ...)
### To calculate Brier score for the original fitted data
## Default S3 method:
ibs(object, ...)
### To calculate Brier score for new data with new outcomes
## S3 method for class 'deepAFT'
ibs(object, newdata=NULL, newy = NULL, ...)

Arguments

object the results of a deepAFT fit.
newdata optional argument, if no null, new data and new y will be used for calculation.
newy optional argument, used together with new data.
... other unused arguments.



msePICW 21

Details

ibs is called to calculate integrate Brier score for the deepAFT model deepAFT.

Value

A list contains the integrate Brier score and the Brier score is returned:

ibs Integerate Brier score

bs Brier score

Author(s)

Bingshu E. Chen

See Also

deepAFT

msePICW Mean Square Error (mse) for a survival Object

Description

Compute Mean Square Error (mse) values for a survival object

Usage

## S3 method for class 'deepAFT'
mseIPCW(object, newdata, newy)

Arguments

object the results of a model fit using a deepAFT or a survreg function.

newdata optional new data at which to do predictions. If absent, predictions are for the
dataframe used in the original fit.

newy optional new outcome variable y.

Details

predict is called to predict object from a deepAFT deepAFT or a survreg model.

IPCW method is used to calcuate the mean square error for censored survival time.

Value

mseIPCW returns the mse for the predicted survival data.



22 optimizerSGD

Author(s)

Bingshu E. Chen

See Also

The default method for predict predict, deepAFT, survfit.dSurv

optimizerSGD Functions to optimize the gradient descent of a cost function

Description

Different type of optimizer functions such as SGD, Momentum, AdamG and NAG.

Usage

optimizerMomentum(V, dW, W, alpha = 0.63, lr = 1e-4, lambda = 1)

Arguments

V Momentum V = alpha*V - lr*(dW + lambda*W); W = W + V. NAG V = al-
pha*(V - lr*(dW + lambda*W); W = W + V - lr*(dW + lambda*W)

dW derivative of cost with respect to W, can be founde by dW = bwdNN2(dy, cache,
model),

W weights for DNN model, optimizerd by W = W + V
alpha Momentum rate 0 < alpha < 1, default is alpah = 0.5.
lr learning rate, default is lr = 0.001.
lambda regulation rate for cost + 0.5*lambda*||W||, default is lambda = 1.0.

Details

For SGD with momentum, use

V = 0; obj = optimizerMomentum(V, dW, W); V = obj$V; W = obj$W

For SDG with MAG

V = 0; obj = optimizerNAG(V, dW, W); V = obj$V; W = obj$W

Value

return and updated W and other parameters such as V, V1 and V2 that will be used on SGD.

Author(s)

Bingshu E. Chen

See Also

activation, bwdNN, fwdNN, dNNmodel, dnnFit



plot 23

plot Plot methods in dnn package

Description

Plot function for plotting of R objects in the dnn package.

Several different type of plots can be produced for the deep learning mdels. Plot method is used to
provide a summary of outputs from "deepAFT", "deepGLM", "deepSurv" and "dnn".

Use "methods(plot)" and the documentation for these for other plot methods.

Usage

## S3 method for class 'dNNmodel'
plot(x, ...)
## S3 method for class 'deepAFT'
plot(x, type = c("predicted", "residuals", "baselineKM"), ...)

Arguments

x a class of "dNNmodel".

type type of plot in deepAFT object, "predicted" to plot the linear predicted values,
"residuals" to plot residuals, "baselineKM" to plot baseline Kaplan-Meier sur-
vival curve.

... other options used in plot().

Details

plot.deepAFT is called to plot the fitted deep learning AFT model.

plot.dNNmodel is called to plot fitted dnn model

The default method, plot.default has its own help page. Use methods("plot") to get all the methods
for the plot generic.

Value

No return value, called to plot a figure.

Author(s)

Bingshu E. Chen

See Also

The default method for plot plot.default. glm



24 predict

predict Predicted Values for a deepAFT Object

Description

Compute predicted values for a deepAFT object

Usage

## S3 method for class 'deepAFT'
## S3 method for class 'dSurv'
predict(object, newdata, newy=NULL, ...)

Arguments

object the results of a model fit using the deepAFT function.

newdata optional new data at which to do predictions. If absent, predictions are for the
dataframe used in the original fit.

newy optional new outcome variable y.

... other options used in predict().

Details

predict.dSurv is called to predict object from the deepAFT or deepSurv model deepAFT.

The default method, predict has its own help page. Use methods("predict") to get all the methods
for the predict generic.

Value

predict.dSurv returns a list of predicted values, prediction error and residuals.

lp linear predictor of beta(w)*Z, where beta(w) is the fitted regression coefficient
and Z is covariance matrix.

risk risk score, exp(lp). When new y is provided, both lp and risk will be ordered by
survival time of the new y.

cumhaz cumulative hzard function.

time time for cumulative hazard function. Time from new y will be used is provided

Author(s)

Bingshu E. Chen

See Also

The default method for predict predict, deepAFT, survfit.dSurv



print 25

print print a summary of fitted deep learning model object

Description

print is used to provide a short summary of outputs from deepAFT, deepSurv, deepGLM, and dNNmodel.

Usage

## S3 method for class 'deepAFT'
print(x, ...)
## S3 method for class 'summary.deepAFT'
print(x, ...)
## S3 method for class 'deepAFT'
summary(object, ...)

## S3 method for class 'dNNmodel'
print(x, ...)
## S3 method for class 'dNNmodel'
summary(object, ...)

Arguments

x a class returned from deepAFT, deepSurv, deepGLM model fit or a dNNmodel
object a class of deepAFT object
... other options used in print()

Details

print.deepAFT is called to print object or summary of object from the deep learning AFT mod-
els deepAFT. summary(fit) provides detail summary of ‘deepAFT’ model fit, including predictors,
baseline survival function for T0=T/exp(mu), and martingale residuals for the fitted model.

print.dNNmodel is called to print object or summary of object from the dNNmodel.

The default method, print.default has its own help page. Use methods("print") to get all the methods
for the print generic.

Value

An object of class "summary.deepAFT" is returned. The object contains the following list compo-
nents:

location location parameter exp(mu), to predice the mean value of survival time.
sfit survfit object of the baselie survival function of T0=T/exp(mu).
cindex Concordance index of the fitted deepAFT model.
resid martingle residuals of the fitted deepAFT model.
method the model used to fit the deepAFT model.



26 residuals

Author(s)

Bingshu E. Chen

See Also

The default method for print print.default. Other methods include survreg, deepAFT, summary

residuals Calculate Residuals for a deepAFT Fit.

Description

Calculates martingale, deviance or Cox-Snell residuals for a previously fitted (deepAFT) model.

Usage

## S3 method for class 'deepAFT'
## S3 method for class 'dSurv'
residuals(object, type = c("martingale", "deviance", "coxSnell"), ...)

Arguments

object the results of a (deepAFT) fit.

type character string indicating the type of residual desired. Possible values are "mar-
tingale", "deviance". Only enough of the string to determine a unique match is
required.

... other unused arguments.

Details

residuals.deepAFT is called to compute baseline survival function S_T0(t) from the deepAFT model
deepAFT, where T0 = T/exp(mu), or log(T) = log(T) - mu.

The default method, residuals has its own help page. Use methods("residuals") to get all the methods
for the residuals generic.

Value

For martingale and deviance residuals, the returned object is a vector with one element for each
subject. The row order will match the input data for the original fit.

See residuals for more detail about other output values.

Note

For deviance residuals, the status variable may need to be reconstructed.



rsurv 27

Author(s)

Bingshu E. Chen

See Also

The default method for residuals residuals, predict.dSurv, survfit.dSurv, and deepAFT.

rsurv The Survival Distribution

Description

Density, distribution function, quantile function and random variable generation for a survival dis-
tribution with a provided hazard function or cumulative hazard function

Usage

dsurv(x, h0 = NULL, H0 = function(x){x}, log=FALSE)
psurv(q, h0 = NULL, H0 = function(x){x}, low.tail=TRUE, log.p=FALSE)
qsurv(p, h0 = NULL, H0 = function(x){x}, low.tail=TRUE)
rsurv(n, h0 = NULL, H0 = function(x){x})
rcoxph(n, h0 = NULL, H0 = function(x){x}, lp = 0)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations.
h0 hazard function, default is h0 = NULL.
H0 cumulative hazard function, default is H0(x) = x.
lp linear predictor for rcoxph, H(x) = H0(x)exp(lp).
log, log.p logical; if TRUE, probabilities p are give as log(p).
low.tail logical; if TRUE, probabilities are P[X < or = x] otherwise, S(x) = P[X>x].

Details

If { h0 } or { H0 } are not specified, they assume the default values of h0(x) = 1 and H0(x) = x,
respectively.

The survival distribution function is given by,

S(x) = exp(-H0(x)),

where H0(x) is the cumulative hazard function. Only one of h0 or H0 can be specified, if h0 is
given, then H0(x) = integrate(h0, 0, x, subdivisions = 500L)

To generate Cox PH survival time, use

u = exp(-H(t)*exp(lp))

then, -log(u)*exp(-lp) = H(t). Find t such that H(t) = -log(u)exp(-lp).



28 survfit

Value

{ dsurv } gives the density h(x)/S(x), { psurv } gives the distribution function, { qsurv } gives
the quantile function, { rsurv } generates random survival time, and { rcoxph } generates random
survival time with Cox proportional hazards model.

The length of the result is determined by n for rsurv and rcoxph.

Author(s)

Bingshu E. Chen

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, volume
1. Wiley, New York.

See Also

Distributions for other standard distributions, including dweibull for the Weibull distribution.

Examples

#### use qsurv to generate quantiles for weibull distribution
H1 = function(x) x^3
qsurv(seq(0.1, 0.9, 0.2), H0 = H1) ### shall be the same as
qweibull(seq(0.1, 0.9, 0.2), 3)
#### to get random survival time from the cumulative hazard function H1(t)
rsurv(15, H0 = H1)

survfit Compute a Survival Curve from a deepAFT or a deepSurv Model

Description

Computes the predicted survival function of a previously fitted deepAFT or deepSurv model.

Usage

## S3 method for class 'deepAFT' or 'deepSurv'
## S3 method for class 'dSurv'
survfit(formula, se.fit=TRUE, conf.int=.95, ...)

Arguments

formula a deepAFT or deepSurv fit object.
se.fit a logical value indicating whether standard errors shall be computed. Default is

TRUE
conf.int the level for a two-sided confidence interval on the survival curve. Default is

0.95
... other unused arguments.



survfit 29

Details

survfit.dSurv is called to compuate baseline survival function S_T0(t) from the deepAFT model
deepAFT, where T0 = T/exp(mu), or log(T) = log(T) - mu.

For the deepSurv model deepAFT, survfit.dSurv evaluates the Nelson-Aalen estimate of the baseline
survival function.

The default method, survfit has its own help page. Use methods("survfit") to get all the methods for
the survfit generic.

Value

survfit.deepAFT returns a list of predicted baseline survival function, cumulative hazard function
and residuals.

surv Predicted baseline survival function for T0=T/exp(mu).

cumhaz Baseline cumulative hazard function, -log(surv).

hazard Baseline hazard function.

varhaz Variance of the baseline hazard.

residuals Martingale residuals of the (deepAFT) model.

std.err Standard error for the cumulative hazard function, if se.fit = TRUE.

See survfit for more detail about other output values such as upper, lower, conf.type. Confidence
interval is based on log-transformation of survival function.

Author(s)

Bingshu E. Chen

See Also

The default method for survfit survfit, predict.dSurv



Index

∗ Back propagation
activation, 4
bwdNN, 5

∗ Cox PH random variable
rsurv, 27

∗ Deep Neural Networks
dnn-package, 2

∗ Deep Neural Network
activation, 4
bwdNN, 5
dNNmodel, 16
fwdNN, 17

∗ Feed forward
activation, 4
fwdNN, 17

∗ Hyper parameter
hyperTuning, 18

∗ IPCW
msePICW, 21

∗ Integrated Brier Score
ibs, 20

∗ MSE
msePICW, 21

∗ Survival distribution
rsurv, 27

∗ activation function
activation, 4

∗ dNNmodel
deepAFT, 6

∗ deepAFT
deepAFT, 6
hyperTuning, 18
plot, 23
print, 25

∗ deepGLM
deepGLM, 9
plot, 23
print, 25

∗ deepSurv

deepSurv, 11
hyperTuning, 18
plot, 23
print, 25

∗ dnnControl
deepAFT, 6

∗ dnnFit
dnnControl, 13
dnnFit, 14

∗ dnn
deepGLM, 9
deepSurv, 11

∗ optimizer AdamG
optimizerSGD, 22

∗ optimizer Momentum
optimizerSGD, 22

∗ optimizer NAG
optimizerSGD, 22

∗ optimizer SDG
optimizerSGD, 22

∗ plot
plot, 23

∗ predict
predict, 24

∗ print
print, 25

∗ residuals
residuals, 26

∗ summary
plot, 23
print, 25

∗ survfit
survfit, 28

activation, 4, 22

bwdCheck (bwdNN), 5
bwdNN, 3, 5, 5, 17, 18, 22
bwdNN2 (bwdNN), 5

30



INDEX 31

coxph, 3
CVpredErr (hyperTuning), 18

deepAFT, 3, 6, 10, 12, 14, 16, 20–22, 24–27, 29
deepGLM, 3, 9, 14, 20, 25
deepGlm, 12, 16
deepGlm (deepGLM), 9
deepSurv, 3, 11, 14, 16, 20, 25
delu (activation), 4
didu (activation), 4
Distributions, 28
dlrelu (activation), 4
dnn (dnn-package), 2
dnn-doc (dnn-package), 2
dnn-package, 2
dnnControl, 13, 15, 16, 19
dnnFit, 13, 14, 14, 20, 22
dnnFit2 (dnnFit), 14
dNNmodel, 3, 5, 6, 10, 15, 16, 19, 22, 25
drelu (activation), 4
dsigmoid (activation), 4
dsurv (rsurv), 27
dtanh (activation), 4
dweibull, 28

elu (activation), 4

fwdNN, 3, 5, 6, 17, 17, 22
fwdNN2 (fwdNN), 17

glm, 3, 10, 23

hyperTuning, 18

ibs, 20
ibs.deepAFT, 8
idu (activation), 4

lrelu (activation), 4

mseIPCW (msePICW), 21
msePICW, 21

optimizerAdamG (optimizerSGD), 22
optimizerMomentum (optimizerSGD), 22
optimizerNAG, 5, 17
optimizerNAG (optimizerSGD), 22
optimizerSGD, 5, 17, 22

plot, 23

plot.default, 23
plot.dNNmodel, 6, 17, 18
predict, 22, 24, 24
predict.deepGlm, 10
predict.deepGlm (deepGLM), 9
predict.dNNmodel (fwdNN), 17
predict.dSurv, 27, 29
print, 25
print.deepAFT, 8
print.deepSurv, 10, 12
print.default, 26
print.dNNmodel, 6, 17, 18
psurv (rsurv), 27

qsurv (rsurv), 27

rcoxph (rsurv), 27
relu (activation), 4
residuals, 26, 26, 27
residuals.deepGlm (deepGLM), 9
rSurv (rsurv), 27
rsurv, 27

sigmoid (activation), 4
summary, 26
summary.deepAFT (print), 25
summary.deepGlm (deepGLM), 9
summary.deepSurv (deepSurv), 11
summary.dNNmodel, 6, 17, 18
summary.dNNmodel (print), 25
survfit, 28, 29
survfit.dSurv, 22, 24, 27
survival, 3
survreg, 8, 12, 26


	dnn-package
	activation
	bwdNN
	deepAFT
	deepGLM
	deepSurv
	dnnControl
	dnnFit
	dNNmodel
	fwdNN
	hyperTuning
	ibs
	msePICW
	optimizerSGD
	plot
	predict
	print
	residuals
	rsurv
	survfit
	Index

